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SECTION 1

INTRODUCTION

Flow separation can substantially alter the anticipated
loads and heating rates on high speed aircraft surfaces, and can
compromise an aircraft design. The importance of this problem
is well recognized and has prompted many investigations of
shock-induced separated flows (e.g., Refs. 1-40). Although im-
portant to practical aircraft design, three dimensional separated
flow problems are quite complex and are not amenable to theoreti-
cal solutions at present. The subject work was undertaken to ob-
tain a better understanding of some important three dimensional
flow effects for a relatively basic geometry: flow separation

ahead of finite span, forward facing steps.

The character of the boundary layer and the ratio of the
step height to the undisturbed boundary layer thickness strongly
affect the extent of flow separation ahead of steps. These ef-
fects have been investigated for high aspect ratio, essentially
"two dimensional' steps (Refs. 6, 17, 35, 36, and 38). The sub-
ject work complements these existing separated flow investiga-

tions and includes finite span effects.

Steps of various spans were mounted on an existing large
flat plate model. Flow conditions, step height. model size, and
attitude were chosen to ensure turbulent boundary layer flow on
the flat plate surface prior to the onset of separation. All
steps had the same height, which was chosen to be several times
larger than the undisturbed boundary layer thickness. Dense
arrays of surface aercdynamic heat transfer rate data were ob-
tained, as well as planform oil film flow and profile schlieren
photographs. The data were analyzed, compared with some ana~

lytical results, and are presented herein.



SECTION II

EXPERIMENTAL APPARATUS, FLOW CONDITIONS, AND TEST PROCEDURE

1 Model

?lanform and profile views of the flat plate f. v facing
step modcl are sketched in Figure 1. An existing FD'. .lLat plate
model, which had been used in an earlier experimental program
(Ref. 23), was modified for the present experiments. The flat
plate portion of the model has a 24-inch span and a 26.5-inch
chord. The face of the model forms an angle of 30.5° with the

flat plate surface, and the leading edge is ground sharp.

A 10-irch square portion of the flat plate surface, cen-
tered mid-span and terminating at the plate trailing edge, is
instrumented with thermocouples. Thermocouples are spot welded
to the inner surface of thin wall portions of the insert to
enable one to obtain aerodynamic heating rates using the thin
wall transient temperature technique (Ref. 23). The thermo-
couples are spaced at 0.50-inch intervals along three chord-
wise lines, and at 0.25-inch intervals along two chordwise

lines. The five chordwise lines are two inches apart.

Forward facing steps of 3-, 5-, 7-, and 10-inch spans
were fabricated. The steps have 2-inch chords, heights of
l-inch, and are attachable at different locations near the
trailing edge of the flat plate surface. The steps can be
shifted forward 0.125-inch from the furthest aft location, and
can be shifted spanwise in 0.5-inch intervals. Shifting the
step location between tunnel runs permits obtaining thermocouple
data at 0.125~inch intervals along chordwise lines 0.5-inch
apart. The steps are sealed and insulated from the flat plate

surface by a tayer of teflon. A step oriented coordinate system



is shown in Figure 2. The origin is centered at the step mid-span

where the forward face of the step meets the flat plate surface.

2 Wind Tunnel

The subject exper iments were conducted in the von Karman
Facility Tunnel B at Arnold Engineering Development Center (AEDC).
This is a continuous flow, closed-circuit, variable density wind
tunnel. It has replaceable, axisymmetric, contoured nozzles to
provide either nominally Mach 6 or Mach 8 free stream flows in
the 50-inch diameter test section (Ref. 41). A model injection
system is located in a cabin directly beneath the test section;
the model may be injected into the tunnel flow and then ejected
without interrupting the tunnel {low. A front view photograph
of the model mounted on the injection system in the cabin beneath
the test section is shown in Figure 3. 1In this photograph, the

10-inch span forward facing step is attached to the model.

3 Flow Conditions

In order tc¢ provide data for turbulent boundary layer sepa-
ration, tunnel stagnation pressure (po) and temperature (To)
values were chosen that result in a relatively high unit Reynolds
number (Rex/ft) in the nominal Mach 6 free stream flow. How-
ever, when the plate was aligned with the free stream flow. 1
turbulent boundary layer was mnot fully developed on the plate
surface until further downstream than desired. Therefore, the
model was pitched nose downward (flat plate surface in compres-
sion), in order to increase the local flow unit Reynolds number
and cause boundary layer transition to occur further forward.

Two angles of attack were chosen: o = -6.8° and o = -9.0°.



The local Mach numbers (Ml) of the resulting flows over the

M1 = 5.04 and Ml = 4.75.

Tunnel flow stagnation conditions, free stieam flow static

flat plate surface were:

conditions, and local flow conditions over the flat plate surface
are listed in Table I. Free stream conditions are denoted by
subscript «, local flow conditions over the pitched flat plate
surface are indicated by subscript 1. The adiabatic wall tem-
perature for turbulent boundary layer flow over the flat plate

surface (T ) is computed using a turbulent recoveryv factor

awT
ot 0.89

T 2

awl _ 1+ 0.178 M° oh

To 1+ 0.2 M

TABLE 1 FLOW CONDITIONS
a (deg) ~6.8 -9.0

P, (psia) 284 P01 (psia) 262 241
TO ( R) 850 TO1 ( R) 850 850
M_ 5.95 M, 5.04 4.75
Re_/10° £t 5.33 R2 /10° £t 7.37 7.78
p_ (psia) 0.189 b, (psia) 0.473 0.613
T (°R) 105 T, (R) 140 154
TawT ( R) 768 TawT( R) 772 773




%

.‘(’- A
P
PN
5
s
“Hi
e
x

S el b o
4 #
! R 54

AL ST ARG Ty o kT 41
O e

2

g

b T AN
B

e

L0

=T
%

s P

£ ¥

e

Lyl
ghieian:

T
U LR R

e

o

4 Data and Test Procedure

Data were obtained on five basic model configurations (flat
plate alone or with any one of four forward facing steps of dif-
ferent spans), at two model angles of attack (-6.8 and -9.07).
Aerodynamic heating rate distributions on the flat plate surface
and profile schlieren flow photographs were obtained for all con-
figurations at both angles of attack. As indicated in Table II,
planform oil film flow motion pictures were obtained when the
steps were attached to the flat plate model at a = =-6.8"

™
1
the flat plate model at « = =9.0" (M1 = 4.75). Several tunnel

5.04), and when the 10-inch span step was attached to

Il

runs were duplicated to ascertain the repeatability of the data.

TABLE 2 DATA

Step Span (Inches)

My 0 3 5 7 10

5.04 h sch!h o0il1 schi{h o0il sch]h o0il schi{ h oil sch

4.75 h schih sch] h schi h schi h o1l sch

h: heat transfer coefficient distribution

0il: oil film flow motion pictures

sch: schlieren flow photographs

Aerodynamic heat transfer rates, ¢, are proportional to

the rate at which the surface temperature rises on a thin wall

model (Refs. 9, 16, and 23)

q = wre(dT_/dt) (2)
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where w is the density of the model wall material, : 1is the
thickness of the wall at the thermocouple location, ¢ is the

specific heat of the model wall materiai, 7T 1is the surface
wall temperature, and t is time. The aerodynamic heat trans-

fer coefficient used herein is

h = q/(T T )

awT i w (3)

To obtain the heating rates, thke model is cooled to essen-
tially room temperature (approximately 535 R) and then quickly
injected into the tunnel flow, Temperatures measured by each
thermocouple are recorded at the rate of 20/sec for several

seconds. The model is then ejected from the tunnel fiow. Linear

portions of curve fits to the temperature time histories are used

to calculate the values of (dTw/dt). Errocs due to conduction,
-

radiation, and nonuniform flow heating‘ are minimized by using

the linear porticns of the temperature-time curves; the errors

are negligible for the subject experiments (Refs. 9, 16, and 23).

Dense aerodynamic heating rate distributions were obtained
by shifting the step location from run to run and injecting the
model again into the same tunnel flow. Thus, up to eight runs
were used to record temperature data for one step configuration.
This effectively increases the thermocouple location density
eightfold. Profile schlieren flow photographs were taken while

the temperature dats were being measured and recorded.

Additional tunnel runs were required to obtain planform oil

film flow motion pictures. The flat plate surface was coated

-+

Full injection from cabin to tunnel centerline takes approxi-
mately two seconds. The model passes through the tunnel wall

free shear layer and experiences nonuniform flow heating for
less than one second.



with a mixture of titanium dioxide and silicone o0il and the
model injected into the tunnel flow. High resolution motion
pictures of the surface o0il film flow were obtained using

70 mm film and a framing rate of 10/sec.

S T R TR RRE &

;‘.

i




SECTION III

EXPERIMENTAL RESULTS

Data are presented first for flows over the flat plate model
with no step attached. Streamwise distributions of the aerody-
namic heat transfer coefficients on the flat plate surface at
a=-6.8° (My = 5.04) and at o =-9.0" (M, = 4.75), referred
to as hund(x), are used to nondimensionalize the hezt transfer
coefficients measured on the plate surface when various span

steps are attached to the model.

1 Flows Over Flat Plate Without Steps

The coordinate system origin, when there is no step, 1is
taken along the flat plate surface centerline, 23.75 inches
downstream of the plate leading edge (cf, Figures 1 and 2).
Boundary layer thicknesses at x = 0, scal:d from profile
schlieren photographs (Figure 4), are approximately: 0.29-inch
for a = -6.8° and 0.27-inch for o = -9.0". These values
agree closely with those calculated using the Anderson and Lewis
(Ref. 42) method. (The local flow running length Reynolds numr
bers .t x = 0 are approximately 14.6 million for o = -6.8"

and 15.4 million for o = -9.0".)

Aerodynamic heat transfer coefficients for the flows over
the flat plate surface with no step attached are indicated in
Figures & and © “or Ml = 5.04 and 4.75. Measured heat trans-
fer coefficient values are indicated by symbols along the five
streamwise lines of thermocouples for both angles of attack
(Figures 5 and 6). The measured heating rates agree fairly well
with those culcutlated using the Anderson and Lewis method

(Ref. 42), and eraibit no consistent arrmaly. The solid lines



that pass through the data points in Figures 5 and 6 were taken

to be representative oi the heat transfer rate coefficient dis-

tributions for the local flat plate flows undisturbed by steps.

These hund(x) distributions were used to nondimensionalize the
heat transfer rate coefficient distributions measured at all

spanwise stations. The distributions are ziven by

(4.45 - 0.415 x)10°°  for M

5.04

und 1

and by (4)

hund

-
(5.40 - 0.0508 x)10 © for M 4.75

1

Nondimensionalizing the data in coefficient form, and using con-
sistent values for the local undisturbed flow heat transfer co-
efficient distributions, avoids compounding errors caused by

minor variation. in thermocouple readings or tunnel flow condi-

tions from run to run.

Heat transfer coefficients for the undisturbed lcca Ml =
5.04 flow over the flat plate surface, nonriimensionacized by
values calculated using Fq. (4), are indicated in the “carpet’
plot shown in Figure 7. 1In this figure, the ratio of the heat
transfer coefficients is plotted at the corresponding thermo-
couple locations on the flat plate. The repeatability of the
heat transfer coefficient ratiosg, ascertained by comparing values
from repeat tunnel runs, is approximately 3 percent (standard
deviati~na = 2.5 percent). A similar plot of heat transfer rate
1= 4.75 local undisturbed flow

over the flat plate surface, is shown in Figure 8.

coefficient ratios, for the M
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2 My = 5.04 Flows Over Flat Plate - Step Models

Photographic and heat transfer rate data were obtained for
Ml = 5,04 (:=-6.8") for steps having spans of 3, 5, 7, and
10-inches. A profile schliercn flow photograp.. ~r the 3-inch
span step is shown in Figure 9. Streamwise distributions of
heating rate coefficients on the flat plate surface ahead of the
3-inch step, nondimensionalized using the undisturbed flow heat-
ing rate coefficient distribution "Eq. (4)°, are plotted in
Figure 10 on the same page. Curves are faired through data ob-
tained along the centerline and along lines 1l-inch outboard
(on either side) of the centerline. The highest heating occurs
along the outboard lines, approximately 0.2~inch upstream of

the step face.

A frame from the planform oil film flow motion picture shows
an oil accumulation line ahead of the 3-inch step indicative of
flow separation (Figure 11). This line is superimposed on the
carpet plot of the measured heat transfer coefficient ratios
shown in Figure 12. The oil accumulation line passes through the
region where there is an initial rise in the heat transfer coef-

ficient ratios. Contours of constant values of (h/h are

und)
drawn in Figure 13. Alternate contours are dashed simply as an
aid in distinguishing them. The highest heat transfer coeffi-
cient ratio contour (h/hund = 8), occurs just upstream of the
step face between 0.5 and 1.0-inch outboard from the step

centerline.

Profile schlieren photog.aph and streamwise distributions of
heat transfer coefficient ratios ashead of the 5-inch span step
are shown on the same page in Figures 14 and 15. The oil film

flow photograph, carpet plots of heat transfer coefficient ratios,

10



and contours of constant (h/hund) values are shown in

Figures 16-18. Similar data for the 7-inch span step are
shown in Figures 19-23. Data for the 1C-inch span steps are
given in Figures 24~23. [n all cases, measured peak heating
rates nccur approximately 0.2-inch ahead of the step face and
approximately O0.5-inch inboard of the outboard edge of tue

step.

3 M1 = 4,75 Flows Over Flat Plate - Ste, Models

A profile schlieren photograph fov Ml = 4,75 flow (o =
-9.0°) over the flat plate with a 3-inch span step is shown
in Figure 29. Streamwise heat transfer coefficient ratios on
the plate surface ahead of the 3-inch span step are plotted
in Figure 30 on the same page. Carpet plots of the heat trans-
fer coefficient ratios and contours of constant values of
(h/hund) are shown in Figures 31 and 32. Similar data for the
5- and 7-inch span steps are presented in Figures 33-40,
Planform oil film flow photographs were not obtained for these

configurations (cf. Table 1II).

A profile schlieren photograph and streamwise distributions
of heat transfer coefficient ratios for the 10-inch span step
on the flat plate at o = -9.0° are shown in Figures 41 and 42.
A planform oil f£ilm flow photograph for this configuration is
shown in Figure 43. The oil accumulation line apparent in
Figure 43 is superimposed on the carpet plot of the heat trans-

fer coefficient ratios given in Figure 44. Lines of constant

(h/hund) contours are shown in Figure 45. Similarly to the
model configurations pitched at a = -6.8°, the highest heating
rates on the plate surface pit-hed at o = -9.0° occur approxi-

imately 0.2 inch upstream of the step face and 0.5-inch in-

board of the outboard edge of the step.

11
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As noted earlier, heat transfer data were obtained during
several repeat tumnel runs. For the 10-inch step on the flat
plate at o = -9.0°, the average deviation in the heat trans-
fer coefficient ratio value is 0.025, the standard deviation

is 0.037.

4 Discussion of Experimental Results

The apparent bcundary layer thickness immediately upstream
of flow separation 6sep’ and the apparent length of separaﬁed
flow upstream of the step face, Esep’ scaled from the profile
schlieren flow photographs, are listed in Table III. For these
experiments, the boundary layer thickness and maximum extent of
separation are independent of the step span. The apparent
boundary layer thickness just upstream of separation is slightly
less for a =-9.0 than for o = -6.8°. The extent of separa-
tion, avoparent in the profile schlieren flow photographs, is ap-
proximately the same for both angles of attack. The separation
lengths listed in the table match closely the distances from the
step faces tou the o0il accumulation lines scaled from the planform
oil film flow photographs. Apparent in the planform oil film
flow photographs, and indicated in the heat transfer covefficient

ratio carpet plots, the streamwise extent of separation generally

TABLE 3 APPARENT BOUNDARY IAYER THICKNESS AT SEPARATION
AND EXTENT OF SEPARATED FLOW REGION

My [ B0 () |4 (inl)
5.04 0.26 4.35 + 0.15
4.75 0.24 4.35 + 0.15

12



is greatest near the centerline and diminishes outboard. The
streamwise thickness ot the o0il accumulation line is comparable

to or smaller than the local boundary layer thickness.

For all test cases, the highest heating on the plate oc-
curs approximately 0.2-inch forward of the step face and
0.5-inch inboard from the outboard edge of the step. The peak
heat transfer coefficient ratio values are largest for the
smallest step spans, and decrease monotonically with increasing
step span for both angles of attack. The peak heat transfer
coefficients exceed 6 to 8 times those for the local undis-
turbed flows, depending on step span. Average values of the
heat transfer coefficients in the separated flow region are ap-
proximately 2.5 times as large as those for the undisturbed

flows over the flat plate surfaces.

13



SECTION IV
ANALYTIC METHOD

an analytic method was devised for calculating the extent
and shape of the separated flow region upstream of finite span
steps. The method gives results in good agreement with the sub-
ject data but, because of several assumptions, must be con-
sidered empirical until better ratiojnale are developed for the
derivation of the methcd. Its application to different flow con-
ditions is not warranted until more extensive empirical veri-
fication is provided or until a rational proof of the validity

of the derivation of the method is established.

The method for estimating the extent of separation is based
on the observation that the difference between the shock wave
angle and the effective flow deflection angle at the onset of
separation is a minimum when turbulent bouncary layer separation
occurs ahead of a forward facing step. The shape of the separa-
tion line on the plate surface follows from the assumption that
hyperscnic, turbulent bounddry layer separation is driven by flow
conditions in the outer, inviscid flow and that the subsonic
separated flow region can be approximated by a linear source dis-
tribution with its strength dependent upon the extent of separa-

tion along the centerline.

1 Extent of Separation

The extent of separation along the centerline ahead of a
forward facing step depends on the step height and the effective
angle of the streamline dividing the separated flow from the
outer, inviscid flow. The oblique shock wave, & and inviscid

)

flow deflection angle, ¢, are related by (Refs. 43 and 44)

14



5
(=1M; sin’e + 2
tan(r= - ) = 5 5 tan (5)
(.+1)M1 sin”-

Rewriting the equation as

-1
tan(c = ) = T;E tan ¢ + . 24 (6)
’ (vL)M] sin 2:
and setting the partial derivative of "tan( - -) with respect
to t equal to zero yields
a-1 2 coszv cos 2t
“5M = (7)
8 1 . 2.,
sin”2¢
which may be simplified for computational purposes to
=1 .2 1-2 sin’
M; = (8)
2 1 . 2,
sin”6
For the subject experiments, flow separation occurs where
“tan(¥ = £)] 1is & minimum. Equation (8) may be used to relate

the upstream Mach number and ‘shock wave angle at the onset of
turbulent boundary layer separation ahead of the steps tested in
this program. (In these epxeriments the step height is larger
than tie boundary layer thickness, but not so large that a

strong detached shock wave forms ahead of the step.)

Once ¢ 1is determined for Ml’ the flow deflection angle

(¢) can be determinad using other oblique shock relations, such
as (Refs. 43 and 44)

M% sin29 -1
tan € = 2 5 cot & (9)

M1 (v + cecs 28) + 2

15
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Assuming that the dividing streamline for the separated flow re-

attaches essentially at the top of the forward face of the step

) h

b4
sep tan ¢

therefore

Mi (v + cos 2¢) + 2

= 7 5 h tan ¢ (10)
2(Ml sin”6 - 1)

n

sep

Equations (8) and (10) may be used to calculate the extent of

ol

separation, ksep’ upstream of forward facing steps.

2 Planform Shape of Separated Flow Region

The region of separated flow ahead of finite span steps on a
plate surface is calculated assuming that a line source distribu-
tion exists along the step, perpendicular to the flow. The line

source distribution is expressed by the relationship

b/2

S o m -1/ y-£
¢ = tan (< ) de (11)

-b/2

where b 1is the step span and m 1is the source strength. Inte-

grating this expression and superimposing it upon a uniform free

b)

stream function gives

b
yt+o y© s
v = _m_ b -l 2] by <112
= Uly + b (y+ 2) tan " (y 2) tan =
(12)
2
2 b
L | reD
+ < In =
2 9 b 2
X + (y+"2-)
16
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The strength of the source (m), established from bound. .y

conditrions, is a function of the separation length zsep ‘given
by Eq. (10)]
-1
_ -1 /b/2
m = val [tan (£ >} (13)
sep

Using zero as the constant value of the stream function ¢ along
the separation line and the value for the source strength given

by Eq. (13), the separation line shape can be calculated from

- - y 5
0 =2y tan 1 (h12—> + (y*“b) tan 1.2
y/ 2 X
sep (14)
2
b 2 b
b -1 {}"'2' X X+ O -2-)
- - — -— -
(y 5, tan + ) in 5
| x 2 b
X+ (y-+§)

Sample plots of separation lines calculated in this manner are
compared with the observed oil accumulation line shapes in

Figures 46-49 for M, = 5.04. For these cases, there is generally

L
good agreement between the experimental and analytical separation

lines calculated as described above.

17



SECTION V

CONCLUSTONS

These conclusions pertain to turbulent boundary layer separa-
tion ahead cf finite span, forward facing steps on flat plate sur-

faces. The step spans tested were three to ten times as large as

OO DA R A e e
L R i

the step height, and the step height is three or four times as

large as the undisturbed boundary layer thickness. The results

discussed were obtained for local undisturbed flow Mach numbers

4{,‘,)3; >

ok

of 4.75 and 5.04 and Reynolds numbers of approximately 15

e
3

million, based on plate length upstream of the steps.

23
o
sk

The maximum extent of flow separation upstream of the steps
varies approximately from 4.2 to 4.5 times as large as the
step height, independent of the step spans tested. The average
heat transfer to the surface in the separated flow region is ap-
proximately 2.5 times larger than for the undisturbed flows
over the flat plate surfaces. Local regions of peak heating oc-
cur slightly upstream of the step face at locations approximately
L step height inboard from the side edges of the steps. The
amplification of the heat transfer coefficients in these iocal
regions of peak heating approaches nine for the three-inch span
steps. The peak heating amplification factor diminishes somewhat
with increasing step span. However, the location of peak heating
to the plate surface, with respect to the face and side edges of
the steps, does not vary with step span. Results of derived
analytical expressions for the maximum extent of separation and
for the shape of the separation line on the plate surface agree

with the experimental results for these test conditions.

13
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Figure 14 Profile Schlieren Photograph of M1 = 5.04 Flow Ahead of 5-inch Span Step
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Figure 15 Streamwise Distributions of Heat Transfer Coeffictient B - » (h/hund) on Plate Surface for
M1 = 5.04 Flow Ahead of 5-inch Span Step
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